Structural and biophysical characterization of human myo-inositol oxygenase.

نویسندگان

  • Ann-Gerd Thorsell
  • Camilla Persson
  • Nina Voevodskaya
  • Robert D Busam
  • Martin Hammarström
  • Susanne Gräslund
  • Astrid Gräslund
  • B Martin Hallberg
چکیده

Altered inositol metabolism is implicated in a number of diabetic complications. The first committed step in mammalian inositol catabolism is performed by myo-inositol oxygenase (MIOX), which catalyzes a unique four-electron dioxygen-dependent ring cleavage of myo-inositol to D-glucuronate. Here, we present the crystal structure of human MIOX in complex with myo-inosose-1 bound in a terminal mode to the MIOX diiron cluster site. Furthermore, from biochemical and biophysical results from N-terminal deletion mutagenesis we show that the N terminus is important, through coordination of a set of loops covering the active site, in shielding the active site during catalysis. EPR spectroscopy of the unliganded enzyme displays a two-component spectrum that we can relate to an open and a closed active site conformation. Furthermore, based on site-directed mutagenesis in combination with biochemical and biophysical data, we propose a novel role for Lys(127) in governing access to the diiron cluster.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A review on the role of inositol in aquaculture

Inositol is usually classified as an essential vitamin for most animals, and is recognised as a part of the B-complex vitamins. Among all other inositol isomer forms, myo-inositol possesses biological activity. It is found in the brain, skeletal, heart, and main reproductive tissues and exists as a structural component of phosphatidylinositol in biological cell membranes. Myo-inositol, also act...

متن کامل

Ectopic Expression of a Glycine soja myo-Inositol Oxygenase Gene (GsMIOX1a) in Arabidopsis Enhances Tolerance to Alkaline Stress

Myo-inositol participates in various aspects of plant physiology, and myo-inositol oxygenase is the key enzyme of the myo-inositol oxygenation pathway. Previous studies indicated that myo-inositol oxygenase may play a role in plant responses to abiotic stresses. In this study, we focused on the functional characterization of GsMIOX1a, a remarkable alkaline stress-responsive gene of Glycine soja...

متن کامل

Myo-inositol oxygenase is important for the removal of excess myo-inositol from syncytia induced by Heterodera schachtii in Arabidopsis roots

The enzyme myo-inositol oxygenase is the key enzyme of a pathway leading from myo-inositol to UDP-glucuronic acid. In Arabidopsis, myo-inositol oxygenase is encoded by four genes. All genes are strongly expressed in syncytia induced by the beet cyst nematode Heterodera schachtii in Arabidopsis roots. Here, we studied the effect of a quadruple myo-inositol oxygenase mutant on nematode developmen...

متن کامل

A review on the role of inositol in aquaculture

Inositol is usually classified as an essential vitamin for most animals, and is recognised as a part of the B-complex vitamins. Among all other inositol isomer forms, myo-inositol possesses biological activity. It is found in the brain, skeletal, heart, and main reproductive tissues and exists as a structural component of phosphatidylinositol in biological cell membranes. Myo-inositol, also act...

متن کامل

Purification, characterization and functional cloning of inositol oxygenase from Cryptococcus.

The enzyme inositol oxygenase (myo-inositol : oxygen oxidoreductase; E.C. 1.13.99.1) is a monooxygenase that converts inositol into glucuronic acid in the presence of molecular oxygen. This enzyme is integrated into a pathway leading to either degradation and energy production or the biosynthesis of precursors for polysaccharides. The enzyme was purified from the yeast Cryptococcus lactativorus...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 283 22  شماره 

صفحات  -

تاریخ انتشار 2008